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e Agricultural credit is not a niche development issue,
it is foundational to global food security. Across
South Asia, 500 million smallholder farmers control
80% of agricultural production yet operate with
chronic capital constraints.

e Asingle farmer's inability to purchase quality seeds

or fertilizer cascades into household food insecurity, —

reduced school attendance for children, and Confounders ™,

deepening rural poverty. Yet the inverse is equally Yy Credt __, Treatment.__,/ Crop Yield
true: a farmer with timely credit access can triple —— o7 s |\ Fifec Outcome
yields, lift family income above subsistence, and Covariates |

contribute to regional food surplus.

e The difference between poverty and prosperity for
hundreds of millions hinges on credit access.
Understanding credit's true causal impact ( isolating
it from selection bias) is therefore not merely
academic; it directly shapes development policy
and resource allocation worth billions of dollars
annually.
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Credit remains a critical bottleneck in developing economies, yet its true causal impact on farm productivity
remains fundamentally unclear. While correlational evidence suggests farmers with credit access achieve
yields higher than credit-constrained peers, distinguishing genuine credit effects from selection bias poses a
persistent methodological challenge. The core endogeneity problem is straightforward: farmers with innate
productivity advantages, whether from superior soil quality, managerial ability, or risk tolerance,
simultaneously gain preferential access to formal credit and achieve higher yields independent of credit's
causal contribution. This selection mechanism generates substantial upward bias in naive estimates,
potentially overstating credit's true impact

Conversely, unobserved time-varying shocks (localized rainfall deficits, pest outbreaks, price fluctuations)
create confounding in the opposite direction, dampening estimated effects. Traditional propensity score
matching addresses part of this challenge by conditioning on observable characteristics, yet remains
vulnerable to regularization bias when deploying machine learning algorithms with high-dimensional covariate
spaces

Recent advances in debiased machine learning (Chernozhukov et al., 2018) provide a theoretically rigorous
solution, enabling unbiased inference even with flexible, data-adaptive nuisance parameter estimation.
Cross-fitting further eliminates overfitting bias that would otherwise compromise standard errors. This project
leverages these modern causal inference techniques, Double/Debiased Machine Learning combined with
cross-validation to isolate credit's true causal effect in a panel of Indian sorghum farmers (2001-2014),
advancing both methodological understanding of credit's development impact and practical implementation of
cutting-edge econometric methods in agricultural economics.
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e Chernozhukov, V., Newey, W., & Robins, J. (2018). "Double/Debiased Machine
Learning for Treatment and Structural Parameters,” The Econometrics Journal,
21(1), pp- C1-C68. DOI: 10.1111/ectj.12097

This introduces the concept of Neyman orthogonality and justifies using lasso
regression, logistic regression, random forests, gradient boosting for both propensity
score and outcome model estimation without compromising asymptotic validity. In
agricultural settings with confounders, flexible ML methods are necessary, DML makes
this theoretically sound.

e Kennedy, E. H,, Liao, Z., Athey, S., & Wager, S. (2017). "Optimal Doubly Robust
Estimation of Heterogeneous Treatment Effects,” Econometric Theory, 33(6), pp.
1501-1533.

This paper tells that treatment effect estimator remains consistent if propensity score
model is correct OR outcome model is correct (not both required). Agricultural data
often has unknown functional forms. Double robustness provides insurance: if your
model propensity score misses key interactions, your outcome model recovers
consistent estimates.
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e Chernozhukov, V., Demirer, M., Duflo, E., & Fernandez-Val, I. (2021). "Generic
Machine Learning Inference on Heterogeneous Treatment Effects in Randomized
Experiments, with an Application to the Optimal Planning Problem for the
Get-Out-the-Vote Campaign,” Journal of Econometrics, 247, pp. 109960. (Also:
NBER Working Paper 24687, 2018

This paper mainly explains the theoretical aspect of K-Fold cross validation explaining
how it removes overfitting and gives the best hyperparameters. Tells how K = 5 is the
most general and best values to consider while doing cross validation

e Athey, S., & Wager, S. (2019). "Estimating Treatment Effects with Causal Forests,"
Journal of the American Statistical Association, 113(523), pp. 1228-1242. DOI:
10.1080/01621459.2017.1319839

This paper examines the use of Causal Forests for Heterogeneous Treatment Effects.
While DML estimates average credit effect across all farmers, causal forests reveal
heterogeneity: Does credit matter more for capital-constrained small farms vs. larger
operations? Do younger farmers respond differently? Causal forests answer rigorously
In high-dimensional settings.



The baseline methods estimated agricultural credit's impact on sorghum yields using
propensity score matching and panel fixed effects. However, these methods harbor
critical limitations: machine learning-estimated propensity scores introduce
regularization bias that biases downstream treatment effects, and standard inference
procedures fail with flexible ML algorithms.

We wanted to investigate the following:

1. Does Double/Debiased ML (DML) change your results? By removing
regularization bias, DML reveals credit's true causal effect. We investigate whether
baseline estimates overstated credit's impact due to unaddressed regularization
bias.

2. How does cross-fitting enhance analysis? K-fold sample splitting ensures valid
inference (correct confidence intervals) with flexible ML algorithms. We examine
whether cross-fitting materially improves robustness to model misspecification and
uncertainty quantification compared to full-sample approaches.
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Geographic & Identification Variables

country: Country in which the sample household is located

state: State (regional administrative division)

district: District within the state

taluk: Sub-district/tehsil—a local administrative region

village: Village name (primary sample unit)

year: Calendar year of observation

hhid: Unique Household ID (identifier for each farm household in panel)

Land & Plot Variables

plotcount: Total number of plots operated by a household in a given year

problemsoil plotcount: Number of plots with problematic soils (any soil-related issue) operated by the
household

alkaline_acidic_plotcount: Number of plots with alkaline or acidic soils (unfavorable pH conditions)
erosive_plotcount: Number of plots with erosive soils (susceptible to erosion)

deepsoil_plotcount: Number of plots with deep soils (potentially higher fertility or water retention)
vdeepsoil_plotcount: Number of plots with very deep soils (even greater depth category)
operationalland: Total operational landholding (in acres)

landownership: Household’s land ownership status



Crop related

croparea: Area under sorghum cultivation (acres)

yield: Yield/output of sorghum (kilograms per acre)

local_seed: =1 if local/non-improved seed used; 0 otherwise

intercropping_i: =1 if sorghum crop is intercropped with other crops; 0 otherwise
small: =1 if the household's operational holding is less than 2 hectares; 0 otherwise
kharif: =1 if crop season is Kharif (monsoon); 0 otherwise

Fertilizer, Irrigation & Management Inputs

fertilizer_indicator: =1 if any fertilizer applied in the season; 0 otherwise
fertilizer_frequency: Number of fertilizer applications in the season
irrigation_indicator: =1 if any irrigation applied in the season; 0 otherwise
irrigation_frequency: Number of irrigations in the season

motorpa: Motor hours per acre (measure of irrigation or land preparation intensity)
nitropa: Nitrogen applied per acre (kg/acre)

phospa: Phosphorus applied per acre (kg/acre)

potashpa: Potassium applied per acre (kg/acre)
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Credit & Treatment Variables

tifs: Year household first accessed formal credit (borrowing from banks/co-ops)

tiis: Year household first accessed informal credit (borrowing from moneylenders/friends)

ditf: Treatment indicator—household received formal credit in the current year (binary)

diti: Treatment indicator—household received informal credit in the current year (binary)
instance_formal_before sorghum: Number of times household borrowed formal credit before sorghum
cultivation in a given year

e instance_informal_before sorghum: Number of times household borrowed informal credit before sorghum
cultivation in a given year

Socioeconomic & Caste Variables

td_tot real: Total value of household durables (INR, inflation-adjusted)

e wealth_index: Household wealth measure (INR, real terms)
sc_st_nt: =1 if household belongs to Scheduled Caste, Scheduled Tribe, or Nomadic Tribe (socially
disadvantaged groups); 0 otherwise
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Outcome:- Yield

Treatment:- Diti(informal), Ditf(Formal)

Covariates :-

plotcount, problemsoil plotcount, alkaline _acidic_plotcount, erosive_plotcount,
deepsoil plotcount, vdeepsoil plotcount, croparea, fertilizer_frequency,
fertilizer_indicator, irrigation_frequency, irrigation_indicator, motorpa, nitropa,
phospa, potashpa, local_seed, intercropping i, td_tot_real,
instance_formal_before sorghum, instance_informal _before sorghum,
operationalland, sc_st_nt, kharif, wealth_index, small, village, landownership, year



Exploratory Data Analysis D

RangeIndex: 2151 entries, @ to 2150

We have a national dataset with the following stats: Data columns (total 38 colums):

# Column Non-Null Count

e No. of Data Points/Instances : 2151 e i
e No. of Columns : 38 et Sl
e Shape of the dataset : (2151,38) iies or-ru
e We tried to identify numeric and categorical features: et e

problemsoil plotcount non-null float64
alkaline_acidic_plotcount non-null float64
erosive_plotcount non-null float64
Numerical Columns: Index(['year', 'plotcount’, ‘problemsoil plotcount’, deepsoil plotcount non-null  float64

. - e ' ' . - ¢ : k vdeepsoil_plotcount non-null float64
alkaline acidic_plotcount’, 'erosive plotcount’, 'deepsoil plotcount’, landownership non-null  object

' . "o ¥ cwica v sy ' croparea non-null  float64
vdeepsoil plotcount’, 'croparea’, 'yield', 'fertilizer frequency®, o L fleorea
‘fertilizer indicator’, 'irrigation_frequency', 'irrigation indicator’, fertilizer_frequency non-null  int64

. : e . 'oh £ » hoa' » s fertilizer_indicator non-null floatb4
motorpa’, 'nitropa’, 'phospa’, ‘potashpa’, 'local seed’, irrigation Erequency e

‘intercropping i', 'tifs’, 'tiis’, 'ditf’, 'diti’, 'td_tot real’, r Bl ORI et e I oo

motorpa non-null float64
‘instance_formal_before_sorghum’, ‘instance informal before sorghum’, nitropa non-null  float64
phospa non-null float64
potashpa non-null float64
‘small’ ], local_seed non-null  int64

‘operationalland’, 'sc_st nt', 'kharif', 'wealth_index', 'hhid’,

dtype:'object') intercropping_i 2151 non-null  int64
s . . : : tifs 1599 non-null float64
Categorical Columns: Index(['country’, 'state’, 'district’, 'taluk’, 'village', 'landownership'], dtype='object') tiis 1277 non-null  float64

ditf 941 non-null float64

diti 857 non-null float64
td_tot_real 2151 non-null float64d
instance_formal_before_sorghum 2151 non-null int64
instance_informal_before_sorghum 2151 non-null int64
operationalland 2148 non-null float64
sc_st_nt 2151 non-null int64
kharif 2151 non-null int64
wealth_index 2151 non-null float64
hhid 2151 non-null int64
small 2151 non-null int64
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Descriptive stats for some of the categorical variables:

E—— top Methods of Imputations:

country 2151 1 India

e for categorical variables we performed
district 2151 11 Solapur mOde SUbStItUtlon
taluk 2151 17 North Solapur e for continuous variables we did mean
village 2151 18 Kalman imputation.
icsing val SIS D 2102 . 2o e for diti and ditf we set the variable to 1 after
ISSINng values percentage tor each columns: . . .
5 P 5 we observed that in got introduced in a

Missing Value Percentage
particular year as now its effect will remain.

50 4

state 2151 () Maharashtra

40 4

30

201

10 1

0-

diti
ditf
tiis
tifs

landownership
erosive_plotcount 4
deepsoil_plotcount
vdeepsoil_plotcount
problemsoil_plotcount
alkaline_acidic_plotcount -
operationalland

None



Plots & Distribution of various features 1D
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Distribution of observations
across 2001-2014 reveals an
unbalanced panel: sample size
peaks in early years (2001-2008)
with ~175-200 observations
annually, then declines steadily
to ~90 observations by 2014.
This panel attrition reflects
household exits from the data
(migration, farming cessation), a
common challenge in

longitudinal agricultural surveys.
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Histogram of
alkaline_acidic_plotcount
shows that nearly all plots
have low acidity/alkalinity
scores. Extreme soil
conditions are rare, which may
affect both agricultural credit
needs and yield outcomes in
the sample.

250 {
200

L1507 |
100

50 4

Histogram of yield Boxplot of yield

OO @0 @O0 00

0- y T f T T T T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000

yield yield

sorghum yield—shows tremendous
heterogeneity. Most farms cluster at 200-500
kg/acre, but outliers reach 4000 kg/acre. This
suggests credit could unlock massive
productivity gains for low-yield farms. The
skewed, non-normal distribution justifies our
use of flexible ML algorithms over parametric
methods.
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Value Counts for village

{’year’: 0,

Histogram of hhid

700+ 200 "plotcount’: 36,
600 - —y ;l = ‘problemsoil plotcount®™: 21,
- *alkaline_acidic_plotcount’: 40,
5001 150 4 —74 >_/7 ﬁ = ‘erosive plotcount’: 11,
4001 () >_ *deepsoil plotcount’': 374,
125 \\ ‘vdeepsoil plotcount’: 454,
300 1 -~ *croparea’: 170,
200 3 1007 = ‘yield': 159,
75 4 *fertilizer frequency®: 45,
1001 *fertilizer indicator’: O,
o4 e ; ’ ; : : : ’ 50 - *irrigation_frequency’:
§ 3 g .2 E B = % 5 & =& £ ®§ 2 2 3 % 5§ *irrigation_indicator’:
§ é 'Q?;‘ g g g E § 8 g _E‘ % - j:; 8 é- g g 251 *motorpa’: 346,
z 5 % s £ g2 o @ 2 ‘nitropa’: 178,
g ;;i 3 £ b £ 5 7 100 200 300 400 *phospa’: 118,
8 hhid "potashpa’: 190,
village "local_seed’': O,
*intercropping i': O,
tifs': O,
"tiis': O,
Our panel comprises ~2,151 farm-year Uniform household representation enables sl
observations from various semi-arid villages credible household fixed effects “td_tot_real®: 194,
in India (2001-2014), with heavy concentration estimation to remove time-invariant o e
. . . . i instance_1nrtormal bertore_sorgnum : >
in Kinkhad (26%) and Shirapur (22%). The unobserved confounding (farmer ability, ‘operationalland’: 166,
panel is unbalanced as the sample declines land quality). Within-household variation .
annually due to household attrition. Soil is sufficient for Difference-in-Differences ‘wealth index’: 168,
conditions are predominantly neutral. and panel methods

The above list shows the
outliers present in each feature
based on IQR method

Geographic and temporal concentration
motivate village.



Transition form data assignment to project D

For the baseline we followed
various ML models which were
very naive:

e Logistic Approach

e |Lasso Approach

e Decision Tree Approach

Baseline Methods

«PSM Logistic
Regression

- ML Enhanced
PSM Lasso Trees

- Panel Fixed Effects

DML Approch

» Orthogonalization
Neyman Conditions

* Flexible Algorithms
Random Forest
Boosting

» Cross Fitting K fold
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Baseline models like propensity score matching (PSM) and machine learning-enhanced
PSM (using Lasso or trees) estimate treatment effects but introduce regularization bias
when using high-dimensional covariates.

Shrinkage or pruning in ML algorithms causes biased propensity scores, which in turn
lead to biased treatment effect estimates.

Increasing covariate and sample complexity (many farms, many variables, time effects)
makes parametric models (like logistic regression) too restrictive and possibly
misspecified.

DML (Double/Debiased Machine Learning) effectively removes regularization bias using
orthogonalization and cross-fitting, making treatment effect estimates robust even when
nuisance parameters are imperfectly estimated.

DML enables valid inference in high-dimensional settings, ensuring confidence intervals
are correct, and results are reliable for real-world decision-making.
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We performed several set of experiment:-

Feature Type (2) Models Evaluated (3)

e DITI - Treatment Informal

e Logistic Regression
e DITF — Treatment Formal

e Logistic Regression with L1
Scaling Option (2) e Decision Tree

e No Scaling Total Experiments:

e Scaled (StandardScaler) 2 (features) x 2 (scaling) x 2 (interaction) x

Interaction Terms (2) 3 (models) = 24 setups

e No Interaction Terms
e \With Interaction Terms (nC2 pairwise interactions)



D

-Max SMD , Sensitivity

Max SMD across all 24 Models

Maximum SMD Across All Models

Baseline Results
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SMD Diagnostics: Logistic PS models (standard, scaled, and L1) generally show good balance
after matching, with most worst SMD _after values < 0.10. Examples include: ps_ditf scaled 1,
ps_ L1 ditf 1, ps_L1 diti_2 (worst SMD _after ~0.04—0.08). In contrast, several decision-tree PS
models exhibit poor balance with worst SMD _after > 0.15 — even > 0.20 (e.g., ps_tree ditf 1,
ps_tree ditf int_3, ps tree diti_scaled 2).

Sensitivity (Rosenbaum IN'): Logistic models typically have I' = 0.9-1.1. The strongest in this
run is ps_ditf int_ 3 with I = 1.30. Tree-based PS models often produce I in the 0.6-0.8 range,
indicating high sensitivity to hidden bias.

Inference: Causal conclusions are highly model-dependent. Logistic (especially scaled or L1)
PS specifications offer better covariate balance and higher robustness. Tree-based PS models
produce higher imbalance and lower I, lowering credibility. ATT should be interpreted with
caution.
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Possible Why (Interpretation of Patterns Observed):

Logistic models perform better because they impose smooth, monotonic relationships between
covariates and treatment probability, reducing overfitting and yielding more stable PS estimates.
Scaled versions help as standardization stabilizes optimization, prevents dominance of high-variance
features, and improves convergence for logistic and L1 models.

L1 regularization improves balance by shrinking noisy or weak predictors, reducing variance in the
estimated PS and avoiding extreme propensity scores.

Tree-based PS models perform worse because they overfit—producing sharp splits, extreme PS values
(close to 0 or 1), and poor common support, leading to high post-matching imbalance.

Interaction models worsen for some specs because adding many interactions inflates dimensionality,
and without regularization, the model becomes unstable, again pushing PS toward extremes.

Low Rosenbaum I in tree models suggests that hidden bias concerns are magnified when PS overfits
small unobserved confounding could flip the treatment assignment, making the ATT fragile.

Logistic-based PS models (scaled or regularized) yield more reliable balance and robustness; tree-based
PS models perform substantially worse.



Methodology 1

[ Data Loading ]
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1.Data Preparation:

e Load panel data on farm households, including covariates (plot features, inputs, socioeconomic
status), treatment indicators (formal/informal credit), and yield (outcome).

2.Propensity Score Estimation:

e Use Logistic Regression models to estimate the probability of receiving credit (treatment) based on
covariates.
e Propensity scores are computed both:
e (a) with cross-fitting: train/test splits ensure out-of-sample predictions,
e (b) without cross-fitting: model fit on the entire sample.

3. Outcome Modeling (Yields):

e For each fold (or full sample), fit OLS regressions to predict yields separately for treated and
control groups, using the same set of controls and interaction terms.
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4. Double Machine Learning Estimation:

e Compute treatment effects (ATE) using DML formulas:
e Orthogonalizes estimation by residualizing treatment and outcome models (removes
regularization bias).
e Influence function accounts for uncertainty in propensity and outcome models, yielding valid
standard errors.
e Repeat for every combination:
e With/without interaction terms
e With/without scaling (standardization)
e Both formal and informal credit treatments

5. Cross-Fitting:

e Implements K-fold sample splitting (default: 5-fold).
e Separates nuisance model estimation (propensity/outcome) from treatment effect estimation.
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6. Matching & Diagnostics:

e Perform caliper matching (0.05) on each propensity score variant:
e Matches treated and control units within a caliper band for more comparable groups.
e Compute standardized mean differences (SMD) before/after matching to assess covariate
balance.

7. Results Compilation:

e Summarize all scenario results:
e ATT estimates
e Diagnostic verdict (Best/Good/Acceptable/Weak/Poor)



Results & Inferences

D

RF + Logistic Combined: Max SMD_after Comparison

ps_diti_dml_logit_noint_scaled_nocross
ps_ditf_dml_logit_noint_scaled_cross
ps_ditf_dml_logit_noint_unscaled_cross
ps_diti_dml_logit_noint_scaled_cross
ps_ditf_dml_logit_noint_scaled_nocross
ps_ditf_dml_logit_noint_unscaled_nocross
ps_diti_dml_logit_int_scaled_nocross
ps_diti_dml_logit_noint_unscaled_cross
ps_ditf_dml_logit_int_scaled_nocross
ps_ditf_dml_rf_cross_tuned
ps_diti_dml_rf_cross_tuned
ps_diti_dml_logit_noint_unscaled_nocross
ps_diti_dml_logit_int_scaled_cross

ps_diti_dml_logit_int_unscaled_nocross

ps_diti_dml_logit_int_unscaled_cross ATT=-46.0

ps_ditf_dml_logit_int_unscaled_nocross ATT=111.3
ps_ditf_dml_logit_int_unscaled_cross ATT=99.8

ps_ditf_dml_rf_nocross_tuned
ps_ditf_dml_logit_int_scaled_cross

ps_diti_dml_rf_nocross_tuned ATT=-40.2

0.20 0.25 0.30 0.35

Max SMD_after

0.10 0.15

0.05

0.00

Table 1: Comparison of Propensity Score Models Based on Post-Matching Balance (Max SMD After Matching)

PS Model Treatment Interaction Scaled Max SMD After  Verdict
ps-ditf_dml_logit_noint_scaled_cross ditf No Yes 0.065 Best
ps.ditf_dml_logit_noint_unscaled_cross ditf No No 0.074 Best
ps.ditf_.dml_logit_noint scaled .nocross ditf No Yes 0.085 Best
ps-ditf_dml_logit_noint_unscaled nocross ditf No No 0.107 Best
ps-ditf_dml_logit_int_scaled_nocross ditf Yes Yes 0.140 Best
ps.ditf_dml_logit_int_unscaled_nocross ditf Yes No 0.245 Acceptable
ps.ditf_.dml_logit_int_unscaled_cross ditf Yes No 0.247 Acceptable
ps-ditf_dml_logit_int_scaled_cross ditf Yes Yes 0.265 Weak
ps.diti_dml_logit_noint_scaled _nocross diti No Yes 0.061 Best
ps-diti_dml_logit_noint_scaled _cross diti No Yes 0.080 Best
ps-diti_dml_logit_int_scaled_nocross diti Yes Yes 0.110 Best
ps-diti.dml_logit_noint_unscaled.cross diti No No 0.131 Best
ps.diti_dml_logit_noint_unscaled nocross diti No No 0.165 Good
ps-diti_dml_logit_int_scaled_cross diti Yes Yes 0.177 Good
ps-diti_dml_logit_int_unscaled_nocross diti Yes No 0.208 Acceptable
ps.diti_dml_logit_int_unscaled_cross diti Yes No 0.241 Acceptable
ps-ditf_dml_rf_cross_tuned ditf No No 0.152 Good
ps-ditf_dml_rf_nocross_tuned ditf No No 0.256 Weak
ps.diti_.dml_rf_cross_tuned diti No No 0.152 Good
ps-diti_.dml_rf_nocross_tuned diti No No 0.367 Worst

Love Plot: ps_ditf_dml_rf_cross
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What these results tell us

e Logistic-DML (No-Interaction) is the best PS model across the entire experiment.
o Consistently produces lowest Max SMD_after (~0.06—0.10)
o Produces clean, stable overlap and excellent matching quality.
e Interaction terms worsen balance
o Parameter explosion -> noisier PS -> higher SMD (0.14—0.26)
e RF-DML does not outperform Logistic in this dataset
o Crossfit RF gives ~0.152 (Good)
o No crossfit RF shows strong imbalance (~0.25-0.37)
e ATT magnitudes align with balance quality
o Best SMD models -> stable, believable effects
o Weak/Acceptable/Worst SMD -> effects more unstable -> interpret cautiously



Possible reason why?

1D

1. Orthogonalization needs smooth, stable nuisance functions (¢(W))

e DML’s orthogonal score is stable only when nuisance models (PS + outcome) are smooth and well-behaved.

e Logistic PS is smooth and monotone, giving stable ¢(W).
RF PS is jagged / step-wise, creating unstable ¢(W) and higher variance.

2. True treatment assignment appears close to linear

e In this dataset, treatment probability shifts smoothly with covariates, not via strong nonlinear interactions.
e Logistic-DML aligns better with this true structure — cleaner nuisance estimation.

3. DML breaks when PS is extreme (near 0 or 1)

e RF often outputs PS = 0 or 1, causing ¢(W) blow-ups and poor matching balance.
e Logistic (no-interaction) avoids separation — better overlap, stronger compliance with DML assumptions.

4. Interaction explosion destabilizes logistic models

e Interaction variants generate hundreds of features, degrading nuisance convergence rates.
e DML requires nuisance models to converge faster than 1/7n — violated by noisy interaction models.

5. Cross-fitting helps, but cannot fix poor nuisance model structure

e  Cross-fitting reduces overfitting for both RF and logistic.
e  Butif the base learner is unstable (RF), (W) remains noisy — RF-DML still underperforms logistic-DML.



Comparative Analysis of Propensity distribution 1D

Propensity Score Distribution: ps_ditf_scaled_1 Propensity Score Distribution: ps_ditf_int_scaled_3
ditf ¢ dml Io it_| nomt unscaled _cross
mm Treated = Treated ps_ditf_dml Ioglt noint_ unscaled nocross r ps_ 9
= Control 109 == control e 6  mmm Treated
| ‘ s Control ‘
5 - mss Control ‘ 5 I | |
> 4 4 ‘
z | g |
L = 0
8 Logistic 23 T ' ' 183 ‘
8 | e ‘
2 1 1 2 ‘
1 ||| | |||||i|ii [ I||| ||||II full
0.0 0.2 0.4 0.6 0.8 1.0 0 -""I - | 0 - ""'“"I III =il
0.0 0.2 ..0'4 06 0.8 1.0 Propensity Score 0.0 0.8 1.0 0.0 0.8 1.0
T . Pro ensity score Pro ensity score
ps_L1_ditf scaled_1 ps_L1_ditf_int_scaled_3 P ty P ty
mm Treated 107w Treated
= Control = Control Logistic+DML Logistic+DML+Crossfit
Logistic+
L1 i
ps_ditf_dml_rf_nocross_tuned EsadiIIm] FEerosy ined
mm Treated mm Treated
e Control 41 e Control
oD o5 0 b 08 id 0.0 0.2 0.4 0.6 0.8 1.0
Finpersity scoieiDEtmidaon: ps Fice dit scaicd Propensity Score Distribution: ps_tree_ditf_int_scaled_3
| Ti'eateT 25 4 mmm Treated
204 [ Control [ Control
201
0.4 05 06 0.7 0.8
15 + Propensity score 0.2 0.4 06 0.8 1.0
i - &
g 15 Decision ropensity score
10 8 tree
10 4 .
Random Forest +DML Random Forest +DML+Crossfit
5 5
0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 04 0.6 0.8 10

Propensity Score Propensity Score



Inference D

1. Logistic Regression (Base / L1 / Interaction)

. Behavior: Severe separation treated cluster near 1.0, controls near 0.0.
° Issue: Almost no overlap between groups especially when we introduce interaction terms ,
° Why: Logistic regression is too rigid, capturing only linear/logistic boundaries -> cannot model complex covariate—treatment relationships.

2. Logistic + DML (Crossfit & No-Crossfit)

° Behavior: Slight smoothing of extremes; modest improvement in overlap.
° Issue: Still polarized; overlap remains poor.
° Why: DML stabilizes predictions, but the base logistic function is still underfit, limiting improvements.

3. Decision Tree PS

) Behavior: Strong spikes at 0 and 1 (almost binary propensities).
° Issue: Violates positivity; unusable for matching.
e  Why: Trees create hard splits, leading to deterministic assignment.also at times it overfit.

4. Random Forest + DML

° Behavior: Smooth, continuous PS; treated & control distributions overlap across 0.3-0.8.
. Why: RF captures nonlinearities, interactions, and heterogeneous effects without requiring explicit specification.

5. Random Forest + DML + Crossfit (Best Model)

° Behavior: Highest overlap; no extreme spikes; balanced PS distribution.
e  Why it works best:
o  Crossfit reduces overfitting.
o RF naturally models nonlinear covariate—treatment patterns.
o  Stabilizes both PS and outcome models -> strongest orthogonalization.



Extension Setup nn

Estimate causal impact of formal (ditf) and informal credit (diti) on
agricultural yield using modern ML-based causal inference.

Methods Used Diagnostics & Inference

1. Double Machine Learning (DML) e Propensity score overlap checks

e Propensity models: Logistic Regression and Random e T (treatment effect) distribution checks
Forest e Z-tests, p-values, 95% Cls for both ATE
e Outcome models: Linear Regression and Random Forest and ATT

e 5-fold cross-fitting to avoid overfitting

e Outputs: ATE & ATT via orthogonal score construction * Final comparison table generated for

each estimator
2. Meta-Learners (Treatment Effect Learners)

All implemented using Random Forest regressors: Each provides:
e S-Learner — Single joint model e [ndividual treatment effect T
e T-Learner — Separate treated & control models e ATE = mean(T)
e X-Learner — Imputation + re-weighting e ATT = mean(Ti | treated)
e DR-Learner — Doubly-robust pseudo-outcomes
e D-Learner — Orthogonal pseudo-outcome regression



Extension Results nn

Method ATE ATE CI ATT ATT CI p-value (ATT)
Formal Credit (DITF)
DML (Logit+LR) 128.7  [-231.4, 488.8] -220  [-44.19, 0.15] 0.0516
DML (RF) 6.28 [-33.1, 45.7] 8.54 [-12.9, 30.0] 0.4350
S-Learner 12.86  [11.94,13.77] 1132  [10.15, 12.49] 0.0000
T-Learner 1879  [11.68,25.90] 625  [-5.04, 17.55] 0.2779
X-Learner 28.54  [25.25,31.82] 24.80  [21.13, 28.48] 0.0000
DR-Learner 21.97  [5.94, 37.99] 230  [-21.52, 26.13) 0.8497
D-Learner 78.96  [0.09. 157.83)  92.19  [-40.29, 224.67] 0.1726
Informal Credit (DITI)
DML (Logit+LR) 59.55 [-90.86, 209.96] -21.23  [-46.48, 4.02] 0.0994
DML (RF) -21.62  [-48.07,4.83] -2064  [-43.44, 2.15] 0.0759
S-Learner 1.66 [1.25, 2.07] 1.02 [0.30, 1.74] 0.0057
T-Learner -15.96  [-22.93,-8.98] -8.90  [-19.11, 1.32] 0.0881
X-Learner -5.15  [-8.84,-147] -13.95  [-20.21, -7.69] 0.000013
DR-Learner -5.35  [-20.28,9.58] -9.70  [-33.89, 14.49] 0.4320
D-Learner -057 [-59.43.58.30] -0.67  [-69.20, 67.86] 0.9847

Table 1: Causal Effect Estimates: ATE and ATT with 95% Confidence Intervals



Extension Inference

D

1. Formal Credit (DITF)

Across the most reliable learners (X-Learner, S-Learner), formal credit has a positive and statistically significant impact on crop yield.
Estimated ATE ranges from +13 to +29 kg, and ATT from +11 to +25 kg.

DML estimates show wider uncertainty, but the direction remains predominantly positive.

2. Informal Credit (DITI)

e X-Learner and T-Learner consistently show negative and statistically significant effects.
e Estimated ATE = -5 to —16 kg, ATT = -9 to —14 kg, with strong significance for X-Learner.
e  This suggests that informal credit is associated with lower yields, even after adjusting for covariates and selection bias.

3. Interpretation of Meta-Learner Consensus

e  The convergence of X-Learner, S-Learner, and T-Learner indicates a robust treatment signal, independent of modeling assumptions.
e  Meta-learners outperform DML in stability due to their ability to model heterogeneous treatment effects directly.
e  The consistency across multiple estimators strengthens the causal claim.

Overall Inference

e  Formal credit improves agricultural productivity.
e Informal credit reduces agricultural productivity.
e  These results are statistically robust and consistent across heterogeneous ML estimators

Treatment-on-treated significance (p = 0.0000) shows that households who actually receive formal credit experience meaningful productivity gains.



