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Introduction
● Agricultural credit is not a niche development issue, 

it is foundational to global food security. Across 
South Asia, 500 million smallholder farmers control 
80% of agricultural production yet operate with 
chronic capital constraints. 

● A single farmer's inability to purchase quality seeds 
or fertilizer cascades into household food insecurity, 
reduced school attendance for children, and 
deepening rural poverty. Yet the inverse is equally 
true: a farmer with timely credit access can triple 
yields, lift family income above subsistence, and 
contribute to regional food surplus.

● The difference between poverty and prosperity for 
hundreds of millions hinges on credit access. 
Understanding credit's true causal impact ( isolating 
it from selection bias) is therefore not merely 
academic; it directly shapes development policy 
and resource allocation worth billions of dollars 
annually.



● Credit remains a critical bottleneck in developing economies, yet its true causal impact on farm productivity 
remains fundamentally unclear. While correlational evidence suggests farmers with credit access achieve 
yields higher than credit-constrained peers, distinguishing genuine credit effects from selection bias poses a 
persistent methodological challenge. The core endogeneity problem is straightforward: farmers with innate 
productivity advantages, whether from superior soil quality, managerial ability, or risk tolerance, 
simultaneously gain preferential access to formal credit and achieve higher yields independent of credit's 
causal contribution. This selection mechanism generates substantial upward bias in naive estimates, 
potentially overstating credit's true impact

● Conversely, unobserved time-varying shocks (localized rainfall deficits, pest outbreaks, price fluctuations) 
create confounding in the opposite direction, dampening estimated effects. Traditional propensity score 
matching addresses part of this challenge by conditioning on observable characteristics, yet remains 
vulnerable to regularization bias when deploying machine learning algorithms with high-dimensional covariate 
spaces

● Recent advances in debiased machine learning (Chernozhukov et al., 2018) provide a theoretically rigorous 
solution, enabling unbiased inference even with flexible, data-adaptive nuisance parameter estimation. 
Cross-fitting further eliminates overfitting bias that would otherwise compromise standard errors. This project 
leverages these modern causal inference techniques, Double/Debiased Machine Learning combined with 
cross-validation to isolate credit's true causal effect in a panel of Indian sorghum farmers (2001-2014), 
advancing both methodological understanding of credit's development impact and practical implementation of 
cutting-edge econometric methods in agricultural economics.



Literature Review
● Chernozhukov, V., Newey, W., & Robins, J. (2018). "Double/Debiased Machine 

Learning for Treatment and Structural Parameters," The Econometrics Journal, 
21(1), pp. C1–C68. DOI: 10.1111/ectj.12097
This introduces the concept of Neyman orthogonality and justifies using lasso 
regression, logistic regression, random forests, gradient boosting for both propensity 
score and outcome model estimation without compromising asymptotic validity. In 
agricultural settings with confounders, flexible ML methods are necessary, DML makes 
this theoretically sound.

● Kennedy, E. H., Liao, Z., Athey, S., & Wager, S. (2017). "Optimal Doubly Robust 
Estimation of Heterogeneous Treatment Effects," Econometric Theory, 33(6), pp. 
1501–1533.
This paper tells that treatment effect estimator remains consistent if propensity score 
model is correct OR outcome model is correct (not both required). Agricultural data 
often has unknown functional forms. Double robustness provides insurance: if your 
model propensity score misses key interactions, your outcome model recovers 
consistent estimates.



● Chernozhukov, V., Demirer, M., Duflo, E., & Fernández-Val, I. (2021). "Generic 
Machine Learning Inference on Heterogeneous Treatment Effects in Randomized 
Experiments, with an Application to the Optimal Planning Problem for the 
Get-Out-the-Vote Campaign," Journal of Econometrics, 247, pp. 109960. (Also: 
NBER Working Paper 24687, 2018
This paper mainly explains the theoretical aspect of K-Fold cross validation explaining 
how it removes overfitting and gives the best hyperparameters. Tells how K = 5 is the 
most general and best values to consider while doing cross validation

● Athey, S., & Wager, S. (2019). "Estimating Treatment Effects with Causal Forests," 
Journal of the American Statistical Association, 113(523), pp. 1228–1242. DOI: 
10.1080/01621459.2017.1319839
This paper examines the use of Causal Forests for Heterogeneous Treatment Effects. 
While DML estimates average credit effect across all farmers, causal forests reveal 
heterogeneity: Does credit matter more for capital-constrained small farms vs. larger 
operations? Do younger farmers respond differently? Causal forests answer rigorously 
in high-dimensional settings.



Problem Statement
The baseline methods estimated agricultural credit's impact on sorghum yields using 
propensity score matching and panel fixed effects. However, these methods harbor 
critical limitations: machine learning-estimated propensity scores introduce 
regularization bias that biases downstream treatment effects, and standard inference 
procedures fail with flexible ML algorithms.
We wanted to investigate the following:
1. Does Double/Debiased ML (DML) change your results? By removing 

regularization bias, DML reveals credit's true causal effect. We investigate whether 
baseline estimates overstated credit's impact due to unaddressed regularization 
bias.

2. How does cross-fitting enhance analysis? K-fold sample splitting ensures valid 
inference (correct confidence intervals) with flexible ML algorithms. We examine 
whether cross-fitting materially improves robustness to model misspecification and 
uncertainty quantification compared to full-sample approaches.



Variable Description



Geographic & Identification Variables
● country: Country in which the sample household is located
● state: State (regional administrative division)
● district: District within the state
● taluk: Sub-district/tehsil—a local administrative region
● village: Village name (primary sample unit)
● year: Calendar year of observation
● hhid: Unique Household ID (identifier for each farm household in panel)

Land & Plot Variables
● plotcount: Total number of plots operated by a household in a given year
● problemsoil_plotcount: Number of plots with problematic soils (any soil-related issue) operated by the 

household
● alkaline_acidic_plotcount: Number of plots with alkaline or acidic soils (unfavorable pH conditions)
● erosive_plotcount: Number of plots with erosive soils (susceptible to erosion)
● deepsoil_plotcount: Number of plots with deep soils (potentially higher fertility or water retention)
● vdeepsoil_plotcount: Number of plots with very deep soils (even greater depth category)
● operationalland: Total operational landholding (in acres)
● landownership: Household’s land ownership status



Crop related
● croparea: Area under sorghum cultivation (acres)
● yield: Yield/output of sorghum (kilograms per acre)
● local_seed: =1 if local/non-improved seed used; 0 otherwise
● intercropping_i: =1 if sorghum crop is intercropped with other crops; 0 otherwise
● small: =1 if the household's operational holding is less than 2 hectares; 0 otherwise
● kharif: =1 if crop season is Kharif (monsoon); 0 otherwise

Fertilizer, Irrigation & Management Inputs
● fertilizer_indicator: =1 if any fertilizer applied in the season; 0 otherwise
● fertilizer_frequency: Number of fertilizer applications in the season
● irrigation_indicator: =1 if any irrigation applied in the season; 0 otherwise
● irrigation_frequency: Number of irrigations in the season
● motorpa: Motor hours per acre (measure of irrigation or land preparation intensity)
● nitropa: Nitrogen applied per acre (kg/acre)
● phospa: Phosphorus applied per acre (kg/acre)
● potashpa: Potassium applied per acre (kg/acre)



Credit & Treatment Variables
● tifs: Year household first accessed formal credit (borrowing from banks/co-ops)
● tiis: Year household first accessed informal credit (borrowing from moneylenders/friends)
● ditf: Treatment indicator—household received formal credit in the current year (binary)
● diti: Treatment indicator—household received informal credit in the current year (binary)
● instance_formal_before_sorghum: Number of times household borrowed formal credit before sorghum 

cultivation in a given year
● instance_informal_before_sorghum: Number of times household borrowed informal credit before sorghum 

cultivation in a given year

Socioeconomic & Caste Variables
● td_tot_real: Total value of household durables (INR, inflation-adjusted)
● wealth_index: Household wealth measure (INR, real terms)
● sc_st_nt: =1 if household belongs to Scheduled Caste, Scheduled Tribe, or Nomadic Tribe (socially 

disadvantaged groups); 0 otherwise



Covariates ,Treatment and Outcome
Outcome:- Yield

Treatment:- Diti(informal), Ditf(Formal)

Covariates :- 

plotcount, problemsoil_plotcount, alkaline_acidic_plotcount, erosive_plotcount, 
deepsoil_plotcount, vdeepsoil_plotcount, croparea, fertilizer_frequency, 
fertilizer_indicator, irrigation_frequency, irrigation_indicator, motorpa, nitropa, 
phospa, potashpa, local_seed, intercropping_i, td_tot_real, 
instance_formal_before_sorghum, instance_informal_before_sorghum, 
operationalland, sc_st_nt, kharif, wealth_index, small, village, landownership, year



Exploratory Data Analysis
We have a national dataset with the following stats:

● No. of Data Points/Instances : 2151
● No. of Columns : 38  
● Shape of the dataset : (2151,38)
● We tried to identify numeric and categorical features:



● Descriptive stats for some of the categorical variables:

● Missing values percentage for each columns:

Methods of Imputations:
● for categorical variables we performed 

mode substitution
● for continuous variables we did mean 

imputation.
● for diti and ditf we set the variable to 1 after 

we observed that in got introduced in a 
particular year as now its effect will remain.



Plots & Distribution of various features

Histogram of 
alkaline_acidic_plotcount 
shows that nearly all plots 
have low acidity/alkalinity 
scores. Extreme soil 
conditions are rare, which may 
affect both agricultural credit 
needs and yield outcomes in 
the sample.

Distribution of observations 
across 2001–2014 reveals an 
unbalanced panel: sample size 
peaks in early years (2001–2008) 
with ~175–200 observations 
annually, then declines steadily 
to ~90 observations by 2014. 
This panel attrition reflects 
household exits from the data 
(migration, farming cessation), a 
common challenge in 
longitudinal agricultural surveys.

sorghum yield—shows tremendous 
heterogeneity. Most farms cluster at 200–500 
kg/acre, but outliers reach 4000 kg/acre. This 
suggests credit could unlock massive 
productivity gains for low-yield farms. The 
skewed, non-normal distribution justifies our 
use of flexible ML algorithms over parametric 
methods.



Our panel comprises ~2,151 farm-year 
observations from various semi-arid villages 
in India (2001–2014), with heavy concentration 
in Kinkhad (26%) and Shirapur (22%). The 
panel is unbalanced as the sample declines 
annually due to household attrition. Soil 
conditions are predominantly neutral. 
Geographic and temporal concentration 
motivate village.

Uniform household representation enables 
credible household fixed effects 
estimation to remove time-invariant 
unobserved confounding (farmer ability, 
land quality). Within-household variation 
is sufficient for Difference-in-Differences 
and panel methods The above list shows the 

outliers present in each feature 
based on IQR method 



Transition form data assignment to project

For the baseline we followed 
various ML models which were 
very naive:

● Logistic Approach

● Lasso Approach 

● Decision Tree Approach 



● Baseline models like propensity score matching (PSM) and machine learning-enhanced 
PSM (using Lasso or trees) estimate treatment effects but introduce regularization bias 
when using high-dimensional covariates.

● Shrinkage or pruning in ML algorithms causes biased propensity scores, which in turn 
lead to biased treatment effect estimates.

● Increasing covariate and sample complexity (many farms, many variables, time effects) 
makes parametric models (like logistic regression) too restrictive and possibly 
misspecified.

● DML (Double/Debiased Machine Learning) effectively removes regularization bias using 
orthogonalization and cross-fitting, making treatment effect estimates robust even when 
nuisance parameters are imperfectly estimated.

● DML enables valid inference in high-dimensional settings, ensuring confidence intervals 
are correct, and results are reliable for real-world decision-making.

Why we shift from baseline to DML ?



Baseline Setup
We performed several set of experiment:-

Feature Type (2)

● DITI – Treatment Informal
● DITF – Treatment Formal

Scaling Option (2)

● No Scaling
● Scaled (StandardScaler)

Interaction Terms (2)

● No Interaction Terms
● With Interaction Terms (nC2 pairwise interactions)

Models Evaluated (3)

● Logistic Regression
● Logistic Regression with L1
● Decision Tree

Total Experiments:

2 (features) × 2 (scaling) × 2 (interaction) × 
3 (models) = 24 setups



Baseline Results :-Max SMD , Sensitivity

 Max SMD across all 24 Models 

Rosenbaum Sensitivity Gamma 



Result Inference - Baseline
SMD Diagnostics: Logistic PS models (standard, scaled, and L1) generally show good balance 
after matching, with most worst SMD_after values ≤ 0.10. Examples include: ps_ditf_scaled_1, 
ps_L1_ditf_1, ps_L1_diti_2 (worst SMD_after ~0.04–0.08). In contrast, several decision‑tree PS 
models exhibit poor balance with worst SMD_after > 0.15 — even > 0.20 (e.g., ps_tree_ditf_1, 
ps_tree_ditf_int_3, ps_tree_diti_scaled_2).

Sensitivity (Rosenbaum Γ): Logistic models typically have Γ ≈ 0.9–1.1. The strongest in this 
run is ps_ditf_int_3 with Γ = 1.30. Tree‑based PS models often produce Γ in the 0.6–0.8 range, 
indicating high sensitivity to hidden bias.

Inference: Causal conclusions are highly model‑dependent. Logistic (especially scaled or L1) 
PS specifications offer better covariate balance and higher robustness. Tree‑based PS models 
produce higher imbalance and lower Γ, lowering credibility. ATT should be interpreted with 
caution.



Reasons why 
Possible Why (Interpretation of Patterns Observed):

● Logistic models perform better because they impose smooth, monotonic relationships between 
covariates and treatment probability, reducing overfitting and yielding more stable PS estimates.

● Scaled versions help as standardization stabilizes optimization, prevents dominance of high-variance 
features, and improves convergence for logistic and L1 models.

● L1 regularization improves balance by shrinking noisy or weak predictors, reducing variance in the 
estimated PS and avoiding extreme propensity scores.

● Tree-based PS models perform worse because they overfit—producing sharp splits, extreme PS values 
(close to 0 or 1), and poor common support, leading to high post-matching imbalance.

● Interaction models worsen for some specs because adding many interactions inflates dimensionality, 
and without regularization, the model becomes unstable, again pushing PS toward extremes.

● Low Rosenbaum Γ in tree models suggests that hidden bias concerns are magnified when PS overfits 
small unobserved confounding could flip the treatment assignment, making the ATT fragile.

Logistic-based PS models (scaled or regularized) yield more reliable balance and robustness; tree-based 
PS models perform substantially worse. 



Methodology



1.Data Preparation:

● Load panel data on farm households, including covariates (plot features, inputs, socioeconomic 
status), treatment indicators (formal/informal credit), and yield (outcome).

2.Propensity Score Estimation:

● Use Logistic Regression models to estimate the probability of receiving credit (treatment) based on 
covariates.

● Propensity scores are computed both:
● (a) with cross-fitting: train/test splits ensure out-of-sample predictions,
● (b) without cross-fitting: model fit on the entire sample.

3. Outcome Modeling (Yields):

● For each fold (or full sample), fit OLS regressions to predict yields separately for treated and 
control groups, using the same set of controls and interaction terms.



4. Double Machine Learning Estimation:

● Compute treatment effects (ATE) using DML formulas:
● Orthogonalizes estimation by residualizing treatment and outcome models (removes 

regularization bias).
● Influence function accounts for uncertainty in propensity and outcome models, yielding valid 

standard errors.
● Repeat for every combination:

● With/without interaction terms
● With/without scaling (standardization)
● Both formal and informal credit treatments

5. Cross-Fitting:

● Implements K-fold sample splitting (default: 5-fold).
● Separates nuisance model estimation (propensity/outcome) from treatment effect estimation.



6. Matching & Diagnostics:

● Perform caliper matching (0.05) on each propensity score variant:
● Matches treated and control units within a caliper band for more comparable groups.

● Compute standardized mean differences (SMD) before/after matching to assess covariate 
balance.

7. Results Compilation:

● Summarize all scenario results:
● ATT estimates
● Diagnostic verdict (Best/Good/Acceptable/Weak/Poor)



Results & Inferences



Continue…..
What these results tell us

● Logistic-DML (No-Interaction) is the best PS model across the entire experiment.
○ Consistently produces lowest Max SMD_after (~0.06–0.10)
○ Produces clean, stable overlap and excellent matching quality.

● Interaction terms worsen balance
○ Parameter explosion -> noisier PS -> higher SMD (0.14–0.26)

● RF-DML does not outperform Logistic in this dataset
○ Crossfit RF gives ~0.152 (Good)
○ No crossfit RF shows strong imbalance (~0.25–0.37)

● ATT magnitudes align with balance quality
○ Best SMD models -> stable, believable effects
○ Weak/Acceptable/Worst SMD -> effects more unstable -> interpret cautiously



Possible reason why?
1. Orthogonalization needs smooth, stable nuisance functions (φ(W))

● DML’s orthogonal score is stable only when nuisance models (PS + outcome) are smooth and well-behaved.
● Logistic PS is smooth and monotone, giving stable φ(W).
● RF PS is jagged / step-wise, creating unstable φ(W) and higher variance.

2. True treatment assignment appears close to linear

● In this dataset, treatment probability shifts smoothly with covariates, not via strong nonlinear interactions.
● Logistic-DML aligns better with this true structure → cleaner nuisance estimation.

3. DML breaks when PS is extreme (near 0 or 1)

● RF often outputs PS ≈ 0 or 1, causing φ(W) blow-ups and poor matching balance.
● Logistic (no-interaction) avoids separation → better overlap, stronger compliance with DML assumptions.

4. Interaction explosion destabilizes logistic models

● Interaction variants generate hundreds of features, degrading nuisance convergence rates.
● DML requires nuisance models to converge faster than 1/√n → violated by noisy interaction models.

5. Cross-fitting helps, but cannot fix poor nuisance model structure

● Cross-fitting reduces overfitting for both RF and logistic.
● But if the base learner is unstable (RF), φ(W) remains noisy → RF-DML still underperforms logistic-DML.



Comparative Analysis of Propensity distribution 

Logistic

Logistic+
L1

Decision 
tree

Logistic+DML Logistic+DML+Crossfit

Random Forest +DML Random Forest +DML+Crossfit



Inference
1. Logistic Regression (Base / L1 / Interaction)

● Behavior: Severe separation   treated cluster near 1.0, controls near 0.0.
● Issue: Almost no overlap between groups especially when we introduce interaction terms ,
● Why: Logistic regression is too rigid, capturing only linear/logistic boundaries -> cannot model complex covariate–treatment relationships.

2. Logistic + DML (Crossfit & No-Crossfit)

● Behavior: Slight smoothing of extremes; modest improvement in overlap.
● Issue: Still polarized; overlap remains poor.
● Why: DML stabilizes predictions, but the base logistic function is still underfit, limiting improvements.

3. Decision Tree PS

● Behavior: Strong spikes at 0 and 1 (almost binary propensities).
● Issue: Violates positivity; unusable for matching.
● Why: Trees create hard splits, leading to deterministic assignment.also at times it overfit.

4. Random Forest + DML

● Behavior: Smooth, continuous PS; treated & control distributions overlap across 0.3–0.8.
● Why: RF captures nonlinearities, interactions, and heterogeneous effects without requiring explicit specification.

5. Random Forest + DML + Crossfit (Best Model)

● Behavior: Highest overlap; no extreme spikes; balanced PS distribution.
● Why it works best:

○ Crossfit reduces overfitting.
○ RF naturally models nonlinear covariate–treatment patterns.
○ Stabilizes both PS and outcome models -> strongest orthogonalization.



Extension Setup
Estimate causal impact of formal (ditf) and informal credit (diti) on 
agricultural yield using modern ML-based causal inference.

Methods Used

1. Double Machine Learning (DML)

● Propensity models: Logistic Regression and Random 
Forest

● Outcome models: Linear Regression and Random Forest
● 5-fold cross-fitting to avoid overfitting
● Outputs: ATE & ATT via orthogonal score construction 

2. Meta-Learners (Treatment Effect Learners)

All implemented using Random Forest regressors:

● S-Learner – Single joint model
● T-Learner – Separate treated & control models
● X-Learner – Imputation + re-weighting
● DR-Learner – Doubly-robust pseudo-outcomes
● D-Learner – Orthogonal pseudo-outcome regression

Diagnostics & Inference

● Propensity score overlap checks
● τ (treatment effect) distribution checks
● Z-tests, p-values, 95% CIs for both ATE 

and ATT
● Final comparison table generated for 

each estimator

Each provides:

● Individual treatment effect τᵢ
● ATE = mean(τᵢ)
● ATT = mean(τᵢ | treated)



Extension Results



Extension Inference
1. Formal Credit (DITF)

● Across the most reliable learners (X-Learner, S-Learner), formal credit has a positive and statistically significant impact on crop yield.
● Estimated ATE ranges from +13 to +29 kg, and ATT from +11 to +25 kg.
● Treatment-on-treated significance (p ≈ 0.0000) shows that households who actually receive formal credit experience meaningful productivity gains.
● DML estimates show wider uncertainty, but the direction remains predominantly positive.

2. Informal Credit (DITI)

● X-Learner and T-Learner consistently show negative and statistically significant effects.
● Estimated ATE ≈ –5 to –16 kg, ATT ≈ –9 to –14 kg, with strong significance for X-Learner.
● This suggests that informal credit is associated with lower yields, even after adjusting for covariates and selection bias.

3. Interpretation of Meta-Learner Consensus

● The convergence of X-Learner, S-Learner, and T-Learner indicates a robust treatment signal, independent of modeling assumptions.
● Meta-learners outperform DML in stability due to their ability to model heterogeneous treatment effects directly.
● The consistency across multiple estimators strengthens the causal claim.

Overall Inference

● Formal credit improves agricultural productivity.
● Informal credit reduces agricultural productivity.
● These results are statistically robust and consistent across heterogeneous ML estimators


